
Chris Haseman

Creating Android
Applications

DEVELOP AND DESIGN

Creating

Android
Applications
DEVELOP AND DESIGN

Chris Haseman

Creating Android Applications: Develop and Design

Chris Haseman

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Chris Haseman

Editor: Clifford Colby
Development editor: Robyn Thomas
Production editor: Myrna Vladic
Copyeditor: Scout Festa
Technical editor: Jason LeBrun
Cover design: Aren Howell Straiger
Interior design: Mimi Heft
Compositor: Danielle Foster
Indexer: Valerie Haynes Perry

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Android is a trademark of Google Inc., registered in the United States and other countries. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designa-
tions appear as requested by the owner of the trademark. All other product names and services identified
throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN-13: 978-0-321-78409-4
ISBN-10: 0-321-78409-x

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

To my wife, Meghan,
who’s made me the teacher, writer, and man I am today.

BIO

Chris Haseman has been writing mobile software in various forms since 2003.
He was involved in several large-scale BREW projects, from MMS messaging to
Major League Baseball. More recently, he was an early Android engineer behind
the doubleTwist media player, and he is now the lead Android developer for the
website Tumblr. He’s a faculty member of General Assembly in NYC, where he
teaches Android development. He lives in Brooklyn, where he constantly debates
shaving his beard.

IV CREATING ANDROID APPLICATIONS: DEVELOP AND DESIGN

As always, I could spend more pages thanking people than are in the work itself.
Here are a few who stand out:

David and Susanne H for their support. Ellen Y. for believing so early that I
could do this. JBL for fixing my code. Robyn T. for her patience. Cliff C. for finding
me. Scout F. for her tolerance of my grammar. Sharon H. for her harassment IMs.
Dan C. for his backing. Edwin and Susan K. for their care. Thomas K. for his subtle
and quiet voice. Sparks for his humor. Cotton for “being there.” Lee for the place
to write. The teams at both Tumblr and doubleTwist for all their encouragement.
The Android team at Google for all their hard work. Most of all, Peachpit for giving
me the opportunity to write for you.

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS V

CONTENTS

Introduction . xi

Welcome to Android . xiii

CHAPTER 1 GETTING STARTED WITH ANDROID . 2

Downloading Developer Software . 4
The Android Software Development Kit . 4

Eclipse . 4

Java . 4

Getting Everything Installed . 5
Installing Eclipse . 5

Installing the Android SDK . 5

Downloading a Package . 6

Configuring Eclipse . 8
Adding the Android Plug-in to Eclipse . 8

Locating the SDK . 9

Creating an Emulator . 10

Working with Your Android Phone . 12

Creating a New Android Project . 14

Running a New Project . 17

Troubleshooting the Emulator . 18

Wrapping Up . 19

CHAPTER 2 EXPLORING THE APPLICATION BASICS . 20

The Files . 22
The Manifest . 22

The Activity Class . 23
Watching the Activity in Action . 23

Implementing Your Own Activity . 24

The Life and Times of an Activity . 31

Bonus Round—Data Retention Methods . 35

The Intent Class . 37
Manifest Registration . 37

Adding an Intent . 38

Listening for Intents at Runtime . 41

Moving Your Own Data . 45

The Application Class . 48
The Default Application Declaration . 48

VI CREATING ANDROID APPLICATIONS: DEVELOP AND DESIGN

Customizing Your Own Application . 48

Accessing the Application . 50

Wrapping Up . 51

CHAPTER 3 CREATING USER INTERFACES . 52

The View Class . 54
Creating a View . 54

Altering the UI at Runtime . 58

Handling a Few Common Tasks . 61

Creating Custom Views . 65

Resource Management . 71
Resource Folder Overview . 71

Values Folder . 73

Layout Folders . 74

Drawable Folders . 76

Layout Management . 77
The ViewGroup . 77

The AbsoluteLayout . 78

The LinearLayout . 82

The RelativeLayout . 90

Wrapping Up . 97

CHAPTER 4 ACQUIRING DATA . 98

The Main Thread . 100
You There, Fetch Me that Data! . 100

Watchdogs . 101

What Not to Do . 102

When Am I on the Main Thread? . 102

Getting Off the Main Thread . 103
Getting Back to Main Land . 104

There Must Be a Better Way! . 105

The AsyncTask . 106
How to Make It Work for You . 108

A Few Important Caveats . 111

The IntentService . 113
Declaring a Service . 113

Fetching Images . 114

CONTENTS VII

Checking Your Work . 120

Wrapping Up . 122

CHAPTER 5 ADAPTERS, LISTVIEWS, AND LISTS . 124

Two Pieces to Each List . 126
ListView . 126

Adapter . 126

A Main Menu . 127
Creating the Menu Data . 127

Creating a ListActivity . 128

Defining a Layout for Your ListActivity . 128

Making a Menu List Item . 130

Creating and Populating the ArrayAdapter . 131

Reacting to Click Events . 133

Complex List Views . 134
The 1000-foot View . 134

Creating the Main Layout View . 134

Creating the ListActivity . 135

Getting Twitter Data . 136

Making a Custom Adapter . 138

Building the ListViews . 141

How Do These Objects Interact? . 144

Wrapping Up . 145

CHAPTER 6 THE WAY OF THE SERVICE . 146

What Is a Service? . 148
The Service Lifecycle . 148

Keeping Your Service Running . 149

Shut It Down! . 149

Communication . 150
Intent-Based Communication . 150

Binder Service Communication . 160

Wrapping Up . 166

CHAPTER 7 MANY DEVICES, ONE APPLICATION . 168

Uncovering the Secrets of the res/ Folder . 170
Layout Folders . 170

What Can You Do Beyond Landscape? . 177

VIII CREATING ANDROID APPLICATIONS: DEVELOP AND DESIGN

The Full Screen Define . 177

Limiting Access to Your App to Devices That Work 180
The <uses> Tag . 180

SDK Version Number . 181

Handling Code in Older Android Versions . 182
SharedPreferences and Apply . 182

Reflecting Your Troubles Away . 183

Always Keep an Eye on API Levels . 184

Wrapping Up . 185

CHAPTER 8 MOVIES AND MUSIC . 186

Movies . 188
Adding a VideoView . 188

Setting up for the VideoView . 189

Getting Media to Play . 190

Loading and Playing Media . 192

Cleanup . 193

The Rest, as They Say, Is Up to You . 194

Music . 195
MediaPlayer and State . 195

Playing a Sound . 196

Cleanup . 197

It really is that simple . 197

Longer-Running Music Playback . 198
Binding to the Music Service . 198

Finding the Most Recent Track . 199

Playing the Audio in the Service . 201

Cleanup . 204

Interruptions . 205

Wrapping Up . 207

CHAPTER 9 DETERMINING LOCATIONS AND USING MAPS 208

Location Basics . 210
Mother May I? . 210

Be Careful What You Ask For . 210

Finding a Good Supplier . 211

Getting the Goods . 211

CONTENTS IX

The Sneaky Shortcut . 213

That’s It! . 213

Show Me the Map! . 214
Getting the Library . 214

Adding to the Manifest . 214

Creating the MapActivity . 215

Creating a MapView . 216

Run, Baby, Run . 217

Wrapping Up . 219

CHAPTER 10 TABLETS, FRAGMENTS, AND ACTION BARS, OH MY 220

Fragments . 222
The Lifecycle of the Fragment . 222

Creating a Fragment . 224

Showing a Fragment . 225

Providing Backward Compatibility . 230

The Action Bar . 232
Showing the Action Bar . 232

Adding Elements to the Action Bar . 233

Wrapping Up . 237

CHAPTER 11 PUBLISHING YOUR APPLICATION . 238

Packaging and Versioning . 240
Preventing Debugging . 240

Naming the Package . 240

Versioning . 241

Setting a Minimum SDK value . 242

Packaging and Signing . 243
Exporting a Signed Build . 243

Backing Up Your Keystore File . 244

Submitting Your Build . 246
Watch Your Crash Reports and Fix Them . 246

Update Frequently . 246

Wrapping Up . 247

Index. 248

X CREATING ANDROID APPLICATIONS: DEVELOP AND DESIGN

INTRODUCTION

If you’ve got a burning idea for an application that you’re dying to share, or if you
recognize the power and possibilities of the Android platform, you’ve come to the
right place. This is a short book on an immense topic.

I don’t mean to alarm anyone right off the bat here, but let me be honest: Android
development is hard. Its architecture is dissimilar to that of many existing platforms
(especially other mobile SDKs), there are many traps for beginners to fall into, and the
documentation is frequently sparse at best. In exchange for its difficulty, however,
Google’s Android offers unprecedented power, control, and—yes—responsibility to
those who are brave enough to develop for it.

This is where my job comes in. I’m here to make the process of learning to write
amazing Android software as simple as possible.

Who am I to ask such things of you? I’ve been writing mobile software in a
professional capacity for more than eight years, and for three of those years, I’ve
been developing software for Android. I’ve written code that runs on millions of
handsets throughout the world. Also, I have a beard. We all know that people with
ample facial hair appear to be more authoritative on all subjects.

In return for making this learning process as easy as possible, I ask for a few things:

 � You have a computer. My third-grade teacher taught me never to take any-
thing for granted; maybe you don’t have a computer. If you don’t already have
a computer, you’ll need one—preferably a fast one, because the Android
emulator and Eclipse can use up a fair amount of resources quickly.

 � You’re fluent in Java. Notice that I say fluent, not expert. Because you’ll
be writing usable applications (rather than production libraries, at least to
start), I expect you to know the differences between classes and interfaces.
You should be able to handle threads and concurrency without batting an
eyelash. Further, the more you know about what happens under the hood
(in terms of object creation and garbage collection), the faster and better
your mobile applications will be.

Yes, you can get through the book and even put together rudimentary
applications without knowing much about the Java programming language.

NOTE: Android is an equal opportunity development platform.

While I personally develop on a Mac, you can use any of the three

major platforms (Mac, PC, or Linux).

INTRODUCTION XI

However, when you encounter problems—in both performance and pos-
sibilities—a weak foundation in the programming language may leave you
without a solution.

 � You have boundless patience and endless curiosity. Your interest in and
passion for Android will help you through the difficult subjects covered in
this book and let you glide through the easy ones.

Throughout this book, I focus on how to write features, debug problems, and
make interesting software. I hope that when you’ve finished the book, you’ll have
a firm grasp of the fundamentals of Android software development.

All right, that’s quite enough idle talking. Let’s get started.

WHO THIS BOOK IS FOR

This book is for people who have some programming experience and are curious
about the wild world of Android development.

WHO THIS BOOK IS NOT FOR

This book is not for people who have never seen a line of Java before. It is also not
for expert Android engineers with several applications under their belt.

HOW YOU WILL LEARN

In this book, you’ll learn by doing. Each chapter comes with companion sample code
and clear, concise instructions for how to build that code for yourself. You’ll find the
code samples on the book’s website (www.peachpit.com/androiddevelopanddesign).

WHAT YOU WILL LEARN

You’ll learn the basics of Android development, from creating a project to building
scalable UIs that move between tablets and phones.

NOTE: If you’re more interested in the many “whys” behind Android,

this book is a good one to start with, but it won’t answer every question

you may have.

XII CREATING ANDROID APPLICATIONS: DEVELOP AND DESIGN

www.peachpit.com/androiddevelopanddesign

i

WELCOME TO
ANDROID

WELCOME TO ANDROID

Eclipse and the Android SDK are the two major tools you’ll use to follow along with the

examples in this book. There are, however, a few others you should be aware of that will

be very useful now and in your future work with Android. While you may not use all of

these tools until you’re getting ready to ship an application, it will be helpful to know

about them when the need arises.

THE TOOLS

Over the course of this book, you’ll work with several tools that will make your life
with Google’s Android much easier. Here they are in no particular order:

ECLIPSE

Eclipse is the primary

tool that I’ll be using

throughout the book.

Google has blessed it

as the primary IDE for

Android development and

has released plug-ins to

help. Make sure you get

them, because they take

all the pain out of creat-

ing a project and stepping

through your application

on the device. You’re

welcome to use Eclipse

as well, or, if you’re some

sort of command-line

junkie, you can follow

along with Vim or Emacs

if you prefer.

ANDROID SDK

The Android SDK contains

all the tools you’ll need to

develop Android applica-

tions from the command

line as well as other tools

to help you find and

diagnose problems and

streamline your applica-

tions. You can download

the Android SDK at

http://developer.android

.com/sdk/index.html.

XIV CREATING ANDROID APPLICATIONS: DEVELOP AND DESIGN

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

ANDROID SDK

MANAGER

The Android SDK Manager

(found within the SDK

tools/ directory) will

help you pull down all

versions of the SDK as

well as a plethora of tools,

third-party add-ons, and

all things Android. This

will be the primary way

in which you get new

software from Google’s

headquarters in Moun-

tain View, California.

HIERARCHY VIEWER

This tool will help you

track the complex con-

nections between your

layouts and views as you

build and debug your

applications. This viewer

can be indispensable

when tracking down

those hard-to-understand

layout issues. You can

find this tool in the

SDK tools/ directory as

hierarchyviewer.

DDMS

DDMS (Dalvik Debug

Monitor Server) is your

primary way to interface

with and debug Android

devices. You’ll find it in

the tools/ directory inside

the Android SDK. It does

everything from gathering

logs, sending mock text

messages or locations,

and mapping memory

allocations to taking

screenshots. Eclipse users

have a perspective that

duplicates, within Eclipse,

all the functionality that

this stand-alone applica-

tion offers. This tool is

very much the Swiss Army

knife of your Android

toolkit.

WELCOME TO ANDROID XV

4

ACQUIRING DATA

While the prime directive of this chapter is to

teach you how to acquire data from a remote source, this

is really just a sneaky way for me to teach you about Android

and the main thread. For the sake of simplicity, all the examples

in this chapter will deal with downloading and rendering image

data. In the next chapter, on adapters and lists, I’ll introduce you

to parsing complex data and displaying it to users. Image data, as

a general rule, is larger and more cumbersome, so you’ll run into

more interesting and demonstrative timing issues in dealing with it.

99

e of

data from a remote source, this

for me to teach you about Android

f this chapter is ttoooo

ata from a remote source, this

The Android operation system has exactly one blessed thread authorized to change
anything that will be seen by the user. This alleviates what could be a concurrency
nightmare, such as view locations and data changing in one thread while a differ-
ent one is trying to lay them out onscreen. If only one thread is allowed to touch
the user interface, Android can guarantee that nothing vital is changed while it’s
measuring views and rendering them to the screen. This has, unfortunately, seri-
ous repercussions for how you’ll need to acquire and process data. Let me start
with a simple example.

YOU THERE, FETCH ME THAT DATA!

Were I to ask you, right now, to download an image and display it to the screen,
you’d probably write code that looks a lot like this:

public void onCreate(Bundle extra){

try{

 URL url = new URL(“http://wanderingoak.net/bridge.png”);

 HttpURLConnection httpCon =

 (HttpURLConnection)url.openConnection();

 if(httpCon.getResponseCode() != 200)

 throw new Exception(“Failed to connect”);

 InputStream is = httpCon.getInputStream();

 Bitmap bitmap = BitmapFactory.decodeStream(is);

 ImageView iv = (ImageView)findViewById(R.id.main_image);

 if(iv!=null)

 iv.setImageBitmap(bitmap);

 }catch(Exception e){

 Log.e(“ImageFetching”,”Didn’t work!”,e);

 }

}

THE MAIN THREAD

100 CHAPTER 4 ACQUIRING DATA

This is exactly what I did when initially faced with the same problem. While
this code will fetch and display the required bitmap, there is a very sinister issue
lurking in the code—namely, the code itself is running on the main thread. Why
is this a problem? Consider that there can be only one main thread and that the
main thread is the only one that can interact with the screen in any capacity. This
means that while the example code is waiting for the network to come back with
image data, nothing whatsoever can be rendered to the screen. This image-fetching
code will block any action from taking place anywhere on the device. If you hold
the main thread hostage, buttons will not be processed, phone calls cannot be
answered, and nothing can be drawn to the screen until you release it.

WATCHDOGS

Given that a simple programmer error (like the one in the example code) could
effectively cripple any Android device, Google has gone to great lengths to make
sure no single application can control the main thread for any length of time. Hog-
ging too much of the main thread’s time will result in this disastrous dialog screen
(Figure 4.1) showing up over your application.

FIGURE 4.1 What the user sees when

you hold the main thread hostage.

THE MAIN THREAD 101

TRACKING DOWN ANR CRASHES

Anytime you see an ANR crash, Android will write a file containing a full

stack trace. You can access this file with the following ADB command line:

adb pull /data/anr/traces.txt. This should help you find the offending line.

The traces.txt file shows the stack trace of every thread in your program. The

first thread in the list is usually the one to look at carefully. Sometimes, the

long-running blocking operation will have completed before the system starts

writing traces.txt, which can make for a bewildering stack trace. Your long-

running operation probably finished just after Android started to get huffy

about the main thread being delayed. In the example code that displays the

image, however, it will probably show that httpCon.getResponseCode() was

the culprit. You’ll know this because it will be listed as the topmost stack trace

under your application’s thread list.

This dialog is unaffectionately referred to by developers as an ANR (App Not
Responding) crash. Although operations will continue in the background, and
the user can press the Wait button to return to whatever’s going on within your
application, this is catastrophic for most users, and you should avoid it at all costs.

WHAT NOT TO DO

What kind of things should you avoid on the main thread?

 � Anything involving the network

 � Any task requiring a read or write from or to the file system

 � Heavy processing of any kind (such as image or movie modification)

 � Any task blocking a thread while you wait for something to complete

Excluding this list, there isn’t much left, so, as a general rule, if it doesn’t involve
setup or modification of the user interface, don’t do it on the main thread.

WHEN AM I ON THE MAIN THREAD?

Anytime a method is called from the system (unless explicitly otherwise stated), you
can be sure you’re on the main thread. Again, as a general rule, if you’re not in a thread
created by you, it’s safe to assume you’re probably on the main one, so be careful.

102 CHAPTER 4 ACQUIRING DATA

GETTING OFF THE MAIN THREAD

You can see why holding the main thread hostage while grabbing a silly picture
of the Golden Gate Bridge is a bad idea. But how, you might be wondering, do I
get off the main thread? An inventive hacker might simply move all the offending
code into a separate thread. This imaginary hacker might produce code looking
something like this:

public void onCreate(Bundle extra){

new Thread(){

 public void run(){

 try{

 URL url = new URL(“http://wanderingoak.net/bridge.
 p png”);

 HttpURLConnection httpCon = (HttpURLConnection)
 p url.openConnection();

 if(httpCon.getResponseCode() != 200)

 throw new

 Exception(“Failed to connect”);

 InputStream is = httpCon.getInputStream();

 Bitmap bt = BitmapFactory.decodeStream(is);

 ImageView iv =

 (ImageView)findViewById(R.id.remote_image);

 iv.setImageBitmap(bt);

 }catch(Exception e){

 //handle failure here

 }

 }

 }.start();

}

GETTING OFF THE MAIN THREAD 103

“There,” your enterprising hacker friend might say, “I’ve fixed your problem. The
main thread can continue to run unimpeded by the silly PNG downloading code.”
There is, however, another problem with this new code. If you run the method on
your own emulator, you’ll see that it throws an exception and cannot display the
image onscreen.

Why, you might now ask, is this new failure happening? Well, remember that
the main thread is the only one allowed to make changes to the user interface?
Calling setImageBitmap is very much in the realm of one of those changes and,
thus, can be done only while on the main thread.

GETTING BACK TO MAIN LAND

Android provides, through the Activity class, a way to get back on the main thread
as long as you have access to an activity. Let me fix the hacker’s code to do this
correctly. As I don’t want to indent the code into the following page, I’ll continue
this from the line on which the bitmap is created (remember, we’re still inside the
Activity class, within the onCreate method, inside an inline thread declaration)
(why do I hear the music from Inception playing in my head?).

For orientation purposes, I’ll continue this from the line on which the bitmap
was created in the previous code listing. If you’re confused, check the sample code
for this chapter.

final Bitmap bt = BitmapFactory.decodeStream(is);

ImageActivity.this.runOnUiThread(new Runnable() {

public void run() {

 ImageView iv = (ImageView)findViewById(R.id.remote_image);

 iv.setImageBitmap(bt);

 }

 });

//All the close brackets omitted to save space

104 CHAPTER 4 ACQUIRING DATA

Remember, we’re already running in a thread, so accessing just this will refer
to the thread itself. I, on the other hand, need to invoke a method on the activity.
Calling ImageActivity.this provides a pointer to the outer Activity class in which
we’ve spun up this hacky code and will thus allow us to call runOnUiThread. Further,
because I want to access the recently created bitmap in a different thread, I’ll need
to make the bitmap declaration final or the compiler will get cranky with us.

When you call runOnUiThread, Android will schedule this work to be done as
soon as the main thread is free from other tasks. Once back on the main thread,
all the same “don’t be a hog” rules again apply.

THERE MUST BE A BETTER WAY!

If you’re looking at this jumbled, confusing, un-cancelable code and thinking to
yourself, “Self. There must be a cleaner way to do this,” you’d be right. There are
many ways to handle long-running tasks; I’ll show you what I think are the two
most useful. One is the AsyncTask, a simple way to do an easy action within an
activity. The other, IntentService, is more complicated but much better at handling
repetitive work that can span multiple activities.

GETTING OFF THE MAIN THREAD 105

THE ASYNCTASK

At its core, the AsyncTask is an abstract class that you extend and that provides
the basic framework for a time-consuming asynchronous task.

The best way to describe the AsyncTask is to call it a working thread sand-
wich. That is to say, it has three major methods for which you must provide
implementation.

1. onPreExecute takes place on the main thread and is the first slice of bread.
It sets up the task, prepares a loading dialog, and warns the user that some-
thing is about to happen.

2. doInBackground is the meat of this little task sandwich. This method is
guaranteed by Android to run on a separate background thread. This is
where the majority of your work takes place.

3. onPostExecute will be called once your work is finished (again, on the main
thread), and the results produced by the background method will be passed
to it. This is the other slice of bread.

That’s the gist of the asynchronous task. There are more-complicated factors
that I’ll touch on in just a minute, but this is one of the fundamental building blocks
of the Android platform (given that all hard work must be taken off the main thread).

Take a look at one in action, then we’ll go over the specifics of it:

private class ImageDownloader

extends AsyncTask<String, Integer, Bitmap>{

protected void onPreExecute(){

 //Setup is done here

 }

 @Override

 protected Bitmap doInBackground(String... params) {

 // TODO Auto-generated method stub

 try{

 URL url = new URL(params[0]);

106 CHAPTER 4 ACQUIRING DATA

 HttpURLConnection httpCon =

 (HttpURLConnection)url.openConnection();

 if(httpCon.getResponseCode() != 200)

 throw new Exception(“Failed to connect”);

 InputStream is = httpCon.getInputStream();

 return BitmapFactory.decodeStream(is);

 }catch(Exception e){

 Log.e(“Image”,”Failed to load image”,e);

 }

 return null;

 }

 protected void onProgressUpdate(Integer... params){

 //Update a progress bar here, or ignore it, it’s up to you

 }

 protected void onPostExecute(Bitmap img){

 ImageView iv = (ImageView)findViewById(R.id.remote_image);

 if(iv!=null && img!=null){

 iv.setImageBitmap(img);

 }

 }

 protected void onCancelled(){

 }

 }

That, dear readers, is an asynchronous task that will download an image at the
end of any URL and display it for your pleasure (provided you have an image view
onscreen with the ID remote_image). Here is how you’d kick off such a task from
the onCreate method of your activity.

THE ASYNCTASK 107

public void onCreate(Bundle extras){

 super.onCreate(extras);

 setContentView(R.layout.image_layout);

 id = new ImageDownloader();

 id.execute(“http://wanderingoak.net/bridge.png”);

}

Once you call execute on the ImageDownloader, it will download the image,
process it into a bitmap, and display it to the screen. That is, assuming your image_
layout.xml file contains an ImageView with the ID remote_image.

HOW TO MAKE IT WORK FOR YOU

The AsyncTask requires that you specify three generic type arguments (if you’re
unsure about Java and generics, do a little Googling before you press on) as you
declare your extension of the task.

 � The type of parameter that will be passed into the class. In this example
AsyncTask code, I’m passing one string that will be the URL, but I could
pass several of them. The parameters will always be referenced as an array
no matter how many of them you pass in. Notice that I reference the single
URL string as params[0].

 � The object passed between the doInBackground method (off the main
thread) and the onProgressUpdate method (which will be called on the
main thread). It doesn’t matter in the example, because I’m not doing any
progress updates in this demo, but it’d probably be an integer, which would
be either the percentage of completion of the transaction or the number
of bytes transferred.

 � The object that will be returned by the doInBackground method to be
handled by the onPostExecute call. In this little example, it’s the bitmap
we set out to download.

108 CHAPTER 4 ACQUIRING DATA

Here’s the line in which all three objects are declared:

private class ImageDownloader extends

 AsyncTask<String, Integer, Bitmap>{

In this example, these are the classes that will be passed to your three major
methods.

ONPREEXECUTE

protected void onPreExecute(){

}

onPreExecute is usually when you’ll want to set up a loading dialog or a loading
spinner in the corner of the screen (I’ll discuss dialogs in depth later). Remember,
onPreExecute is called on the main thread, so don’t touch the file system or net-
work at all in this method.

DOINBACKGROUND

protected Bitmap doInBackground(String... params) {

}

This is your chance to make as many network connections, file system accesses,
or other lengthy operations as you like without holding up the phone. The class of
object passed to this method will be determined by the first generic object in your
AsyncTask’s class declaration. Although I’m using only one parameter in the code
sample, you can actually pass any number of parameters (as long as they derive
from the saved class) and you’ll have them at your fingertips when doInBackground
is called. Once your long-running task has been completed, you’ll need to return
the result at the end of your function. This final value will be passed into another
method called back on the main UI thread.

THE ASYNCTASK 109

BEWARE LOADING DIALOGS

Remember that mobile applications are not like their web or desktop coun-

terparts. Your users will typically be using their phones when they’re away

from a conventional computer. This means, usually, that they’re already wait-

ing for something: a bus, that cup of expensive coffee, their friend to come

back from the bathroom, or a boring meeting to end. It’s very important,

therefore, to keep them from having to wait on anything within your appli-

cation. Waiting for your mobile application to connect while you’re already

waiting for something else can be a frustrating experience. Do what you can

to limit users’ exposure to full-screen loading dialogs. They’re unavoidable

sometimes, but minimize them whenever possible.

SHOWING YOUR PROGRESS

There’s another aspect of the AsyncTask that you should be aware of even though
I haven’t demonstrated it. From within doInBackground, you can send progress
updates to the user interface. doInBackground isn’t on the main thread, so if you’d
like to update a progress bar or change the state of something on the screen, you’ll
have to get back on the main thread to make the change.

Within the AsyncTask, you can do this during the doInBackground method by
calling publishProgress and passing in any number of objects deriving from the
second class in the AsyncTask declaration (in the case of this example, an integer).
Android will then, on the main thread, call your declared onProgressUpdate method
and hand over any classes you passed to publishProgress. Here’s what the method
looks like in the AsyncTask example:

protected void onProgressUpdate(Integer... params){

 //Update a progress bar here, or ignore it, it’s up to you

}

As always, be careful when doing UI updates, because if the activity isn’t cur-
rently onscreen or has been destroyed, you could run into some trouble.

110 CHAPTER 4 ACQUIRING DATA

ONPOSTEXECUTE

The work has been finished or, in the example, the image has been downloaded. It’s
time to update the screen with what I’ve acquired. At the end of doInBackground,
if successful, I return a loaded bitmap to the AsyncTask. Now Android will switch
to the main thread and call onPostExecute, passing the class I returned at the end
of doInBackground. Here’s what the code for that method looks like:

protected void onPostExecute(Bitmap img){

 ImageView iv = (ImageView)findViewById(R.id.remote_image);

 if(iv!=null && img!=null){

 iv.setImageBitmap(img);

 }

}

I take the bitmap downloaded from the website, retrieve the image view into
which it’s going to be loaded, and set it as that view’s bitmap to be rendered. There’s
an error case I haven’t correctly handled here. Take a second to look back at the
original code and see if you can spot it.

A FEW IMPORTANT CAVEATS

Typically, an AsyncTask is started from within an activity. However, you must
remember that activities can have short life spans. Recall that, by default, Android
destroys and re-creates any activity each time you rotate the screen. Android will
also destroy your activity when the user backs out of it. You might reasonably ask,

“If I start an AsyncTask from within an activity and then that activity is destroyed,
what happens?” You guessed it: very bad things. Trying to draw to an activity that’s
already been removed from the screen can cause all manner of havoc (usually in
the form of unhandled exceptions).

It’s a good idea to keep track of any AsyncTasks you’ve started, and when the activ-
ity’s onDestroy method is called, make sure to call cancel on any lingering AsyncTask.

There are a few cases in which the AsyncTask is perfect for the job:

 � Downloading small amounts of data specific to one particular activity

 � Loading files from an external storage drive (usually an SD card)

THE ASYNCTASK 111

Make sure, basically, that the data you’re moving with the AsyncTask pertains
to only one activity, because your task generally shouldn’t span more than one. You
can pass it between activities if the screen has been rotated, but this can be tricky.

There are a few cases when it’s not a good idea to use an AsyncTask:

 � Any acquired data that may pertain to more than one activity shouldn’t be
acquired through an AsyncTask. Both an image that might be shown on
more than one screen and a list of messages in a Twitter application, for
example, would have relevance outside a single activity.

 � Data to be posted to a web service is also a bad idea to put on an AsyncTask
for the following reason: Users will want to fire off a post (posting a photo,
blog, tweet, or other data) and do something else, rather than waiting for
a progress bar to clear. By using an AsyncTask, you’re forcing them to wait
around for the posting activity to finish.

 � Last, be aware that there is some overhead for the system in setting up the
AsyncTask. This is fine if you use a few of them, but it may start to slow
down your main thread if you’re firing off hundreds of them.

You might be curious as to exactly what you should use in these cases. I’m glad
you are, because that’s exactly what I’d like to show you next.

112 CHAPTER 4 ACQUIRING DATA

THE INTENTSERVICE

The IntentService is an excellent way to move large amounts of data around without
relying on any specific activity or even application. The AsyncTask will always take
over the main thread at least twice (with its pre- and post-execute methods), and it
must be owned by an activity that is able to draw to the screen. The IntentService
has no such restriction. To demonstrate, I’ll show you how to download the same
image, this time from the IntentService rather than the AsyncTask.

DECLARING A SERVICE

Services are, essentially, classes that run in the background with no access to the
screen. In order for the system to find your service when required, you’ll need to
declare it in your manifest, like so:

<?xml version=”1.0” encoding=”utf-8”?>

<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

 package=”com.haseman.Example”

 android:versionCode=”1”

 android:versionName=”1.0”>

 <application

 android:name=”MyApplication”

 android:icon=”@drawable/icon”

 android:label=”@string/app_name”>

 <!—Rest of the application declarations go here -->

 <service android:name=”.ImageIntentService”/>

 </application>

</manifest>

At a minimum, you’ll need to have this simple declaration. It will then allow
you to (as I showed you earlier with activities) explicitly launch your service. Here’s
the code to do exactly that:

Intent i = new Intent(this, ImageIntentService.class);

i.putExtra(“url”, getIntent().getExtras().getString(“url”));

startService(i);

THE INTENTSERVICE 113

At this point, the system will construct a new instance of your service, call its
onCreate method, and then start firing data at the IntentService’s handleIntent
method. The intent service is specifically constructed to handle large amounts of
work and processing off the main thread. The service’s onCreate method will be
called on the main thread, but subsequent calls to handleIntent are guaranteed
by Android to be on a background thread (and this is where you should put your
long-running code in any case).

Right, enough gabbing. Let me introduce you to the ImageIntentService. The
first thing you’ll need to pay attention to is the constructor:

public class ImageIntentService extends IntentService{

 public ImageIntentService() {

 super(“ImageIntentService”);

 }

Notice that the constructor you must declare has no string as a parameter. The
parent’s constructor that you must call, however, must be passed a string. Eclipse
will make it seem that you must declare a constructor with a string when, in reality,
you must declare it without one. This simple mistake can cause you several hours
of intense face-to-desk debugging.

Once your service exists, and before anything else runs, the system will call
your onCreate method. onCreate is an excellent time to run any housekeeping
chores you’ll need for the rest of the service’s tasks (more on this when I show
you the image downloader).

At last, the service can get down to doing some heavy lifting. Once it has been
constructed and has had its onCreate method called, it will then receive a call to
handleIntent for each time any other activity has called startService.

FETCHING IMAGES

The main difference between fetching images and fetching smaller, manageable
data is that larger data sets (such as images or larger data retrievals) should not be
bundled into a final broadcast intent (another major difference to the AsyncTask).
Also, keep in mind that the service has no direct access to any activity, so it cannot

114 CHAPTER 4 ACQUIRING DATA

ever access the screen on its own. Instead of modifying the screen, the IntentService
will send a broadcast intent alerting all listeners that the image download is complete.
Further, since the service cannot pass the actual image data along with that intent,
you’ll need to save the image to the SD card and include the path to that file in the
final completion broadcast.

THE SETUP

Before you can use the external storage to cache the data, you’ll need to create a
cache folder for your application. A good place to check is when the IntentService’s
onCreate method is called:

public void onCreate(){

 super.onCreate();

 String tmpLocation =

 Environment.getExternalStorageDirectory().getPath()

 + CACHE_FOLDER;

 cacheDir = new File(tmpLocation);

 if(!cacheDir.exists()){

 cacheDir.mkdirs();

 }

}

Using Android’s environment, you can determine the correct prefix for the
external file system. Once you know the path to the eventual cache folder, you can
then make sure the directory is in place. Yes, I know I told you to avoid file-system
contact while on the main thread (and onCreate is called on the main thread),
but checking and creating a directory is a small enough task that it should be all
right. I’ll leave this as an open question for you as you read through the rest of this
chapter: Where might be a better place to put this code?

THE INTENTSERVICE 115

A NOTE ON FILE SYSTEMS

Relying on a file-system cache has an interesting twist with Android. On most

phones, the internal storage space (used to install applications) is incredibly

limited. You should not, under any circumstances, store large amounts of data

anywhere on the local file system. Always save it to a location returned from

getExternalStorageDirectory.

When you’re saving files to the SD card, you must also be aware that nearly

all pre-2.3 Android devices can have their SD cards removed (or mounted as a

USB drive on the user’s laptop). This means you’ll need to gracefully handle

the case where the SD card is missing. You’ll also need to be able to forgo the

file-system cache on the fly if you want your application to work correctly

when the external drive is missing. There are a lot of details to be conscious

of while implementing a persistent storage cache, but the benefits (offline

access, faster start-up times, fewer app-halting loading dialogs) make it

more than worth your effort.

THE FETCH

Now that you’ve got a place to save images as you download them, it’s time to
implement the image fetcher. Here’s the handleIntent method:

protected void onHandleIntent(Intent intent) {

 String remoteUrl = intent.getExtras().getString(“url”);

 String location;

 String filename =

 remoteUrl.substring(

 remoteUrl.lastIndexOf(File.separator)+1);

 File tmp = new File(cacheDir.getPath()

 + File.separator +filename);

 if(tmp.exists()){

 location = tmp.getAbsolutePath();

 notifyFinished(location, remoteUrl);

116 CHAPTER 4 ACQUIRING DATA

 stopSelf();

 return;

 }

 try{

 URL url = new URL(remoteUrl);

 HttpURLConnection httpCon =

 (HttpURLConnection)url.openConnection();

 if(httpCon.getResponseCode() != 200)

 throw new Exception(“Failed to connect”);

 InputStream is = httpCon.getInputStream();

 FileOutputStream fos = new FileOutputStream(tmp);

 writeStream(is, fos);

 fos.flush(); fos.close();

 is.close();

 location = tmp.getAbsolutePath();

 notifyFinished(location, remoteUrl);

 }catch(Exception e){

 Log.e(“Service”,”Failed!”,e);

 }

}

This is a lot of code. Fortunately, most of it is stuff you’ve seen before.
First, you retrieve the URL to be downloaded from the Extras bundle on the

intent. Next, you determine a cache file name by taking the last part of the URL.
Once you know what the file will eventually be called, you can check to see if it’s
already in the cache. If it is, you’re finished, and you can notify the system that the
image is available to load into the UI.

If the file isn’t cached, you’ll need to download it. By now you’ve seen the
HttpUrlConnection code used to download an image at least once, so I won’t bore
you by covering it. Also, if you’ve written any Java code before, you probably know
how to write an input stream to disk.

THE INTENTSERVICE 117

THE CLEANUP

At this point, you’ve created the cache file, retrieved it from the web, and written it
to the aforementioned cache file. It’s time to notify anyone who might be listening
that the image is available. Here’s the contents of the notifyFinished method that
will tell the system both that the image is finished and where to get it.

public static final String TRANSACTION_DONE =

 “com.haseman.TRANSACTION_DONE”;

private void notifyFinished(String location, String remoteUrl){

 Intent i = new Intent(TRANSACTION_DONE);

 i.putExtra(“location”, location);

 i.putExtra(“url”, remoteUrl);

 ImageIntentService.this.sendBroadcast(i);

}

Anyone listening for the broadcast intent com.haseman.TRANSACTION_DONE will
be notified that an image download has finished. They will be able to pull both
the URL (so they can tell if it was an image it actually requested) and the location
of the cached file.

RENDERING THE DOWNLOAD

In order to interact with the downloading service, there are two steps you’ll need
to take. You’ll need to start the service (with the URL you want it to fetch). Before
it starts, however, you’ll need to register a listener for the result broadcast. You can
see these two steps in the following code:

public void onCreate(Bundle extras){

 super.onCreate(extras);

 setContentView(R.layout.image_layout);

 IntentFilter intentFilter = new IntentFilter();

 intentFilter.addAction(ImageIntentService.TRANSACTION_DONE);

 registerReceiver(imageReceiver, intentFilter);

118 CHAPTER 4 ACQUIRING DATA

 Intent i = new Intent(this, ImageIntentService.class);

 i.putExtra(“url”,

getIntent().getExtras().getString(“url”));

 startService(i);

 pd = ProgressDialog.show(this, “Fetching Image”,

“Go intent service go!”);

}

This code registered a receiver (so you can take action once the download is
finished), started the service, and, finally, showed a loading dialog to the user.

Now take a look at what the imageReceiver class looks like:

private BroadcastReceiver imageReceiver = new BroadcastReceiver() {

@Override

 public void onReceive(Context context, Intent intent) {

 String location = intent.getExtras().getString(“location”);

 if(location == null || location.length() ==0){

 Toast.makeText(context, “Failed to download image”,

 Toast.LENGTH_LONG).show();

 }

 File imageFile = new File(location);

 if(!imageFile.exists()){

 pd.dismiss();

 Toast.makeText(context,

 “Unable to Download file :-(“,

 Toast.LENGTH_LONG);

 return;

 }

 Bitmap b = BitmapFactory.decodeFile(location);

THE INTENTSERVICE 119

 ImageView iv = (ImageView)findViewById(R.id.remote_image);

 iv.setImageBitmap(b);

 pd.dismiss();

 }

};

This is a custom extension of the BroadcastReceiver class. This is what you’ll
need to declare inside your activity in order to correctly process events from the
IntentService. Right now, there are two problems with this code. See if you can
recognize them.

First, you’ll need to extract the file location from the intent. You do this by
looking for the “location” extra. Once you’ve verified that this is indeed a valid file,
you’ll pass it over to the BitmapFactory, which will create the image for you. This
bitmap can then be passed off to the ImageView for rendering.

Now, to the things done wrong (stop reading if you haven’t found them yet. No
cheating!). First, the code is not checking to see if the intent service is broadcasting
a completion intent for exactly the image originally asked for (keep in mind that
one service can service requests from any number of activities).

Second, the bitmap is loading from the SD card. . .on the main thread! Exactly
one of the things I’ve been warning you NOT to do.

CHECKING YOUR WORK

Android, in later versions of the SDK tools, has provided a way to check if your
application is breaking the rules and running slow tasks on the main thread. You
can, in any activity, call StrictMode.enableDefaults, and this will begin to throw
warnings when the system spots main thread violations. StrictMode has many
different configurations and settings, but enabling the defaults and cleaning up
as many errors as you can will work wonders for the speed of your application.

120 CHAPTER 4 ACQUIRING DATA

THE LOADER

Loader is a new class that comes both in Honeycomb and in the Android

Compatibility library. Sadly, there is not enough space in this chapter to cover

it in detail, but I will say that it’s an excellent tool to explore if you must

do heavy lifting off the main thread repeatedly. It, like AsyncTask, is usually

bound to an activity, but it is much better suited to handle situations where

a single task must be performed many times. It’s great for loading cursors

(with the CursorLoader subclass) and for other tasks, like downloading indi-

vidual list items for a ListView. Check the documentation for how best to use

this new and powerful class.

THE INTENTSERVICE 121

WRAPPING UP

That about covers us on how to load data. Remember, loading from the SD card,
network transactions, and longer processing tasks MUST be performed off the
main thread, or your application, and users, will suffer. You can, as I’ve shown
you in this chapter, use a simple thread, an AsyncTask, or an IntentService to
retrieve and process your data. But remember, too, that any action modifying any
view or object onscreen must be carried out on the main thread (or Android will
throw angry exceptions at you).

Further, keep in mind that these three methods are only a few of many possible
background data fetching patterns. Loaders, Workers, and ThreadPools are all other
alternatives that might suit your application better than the examples I’ve given.

Follow the simple rules I’ve outlined here, and your app will be fast, it will
be responsive to your users, and it will avoid the dreaded App Not Responding
notification of doom. Correct use and avoidance of the main thread is critical to
producing a successful application.

If you’re more interested in building lists out of complex data from remote
sources, the next chapter should give you exactly what you’re looking for. I’ll be
showing you how to render a list of Twitter messages to a menu onscreen.

I’ll leave you with a final challenge: Enable Android’s strict mode and move
the little file accesses I’ve left in this chapter’s sample code off the main thread. It
should be a good way to familiarize yourself with the process before you undertake
it on your own.

122 CHAPTER 4 ACQUIRING DATA

This page intentionally left blank

: (colon), using with services, 161

A
AbsoluteLayout, 78–82
action bar

action views, 236
adding icons to, 233–234
adding tabs, 235
delete icon, 233
drop-down list action view, 236
features of, 232
icon clicks, 234–235
showing, 232

activities. See also intents
bundle objects, 35
colliding, 44–45
considering for applications, 49
constructor, 31
creating, 24–27
data retention methods, 35
destroying, 32, 36
getting intents, 31
Intent class, 37
intents, 29–31, 37
key handling method, 29
launching, 28–30
listening for key events, 28
locating, 25
NewActivity class, 39
onCreate method, 24, 31–33
onDestroy method, 31, 34
onKeyDown method, 28–30, 40
onPause method, 31, 34
onResume method, 31
OnRetainNonConfigurationInstance method, 35
onSaveInstanceState method, 35–36
onStart method, 31
onStop method, 31, 34
public void onCreate(bundle icicle), 32–33
public void onResume(), 33
public void onStart method, 33

receiving events, 41
screen layout, 27–29
separating from layout files, 178
setContentView method, 28, 33
StrictMode.enableDefaults, 120
TextView ID, 27

Activity class, creating, 25–27
activity declaration, android:name tag, 23
Adapter class

getCount method, 138
getItem method, 138
getItemId method, 138
GetView method, 139
interaction with ListView class, 126, 144

adapters, customizing, 138–140
adb pull /data/anr/traces.txt command line, 102
ADT plug-in, adding to Eclipse, 8–9
AIDL (Android Interface Definition Language), 160–162
Android, older versions of, 182–184
android create project command, 16
Android Developers website, 4
Android folder, displaying, 14
Android phone

USB debugging, 12
using, 12

Android projects
creating, 14–16
creating from command line, 16
DDMS perspective, 17
Java package, 15
naming, 15
naming activities, 15
naming applications, 15
running, 17
selecting, 14
selecting version of, 15

Android SDK
downloading, xiv, 4
installing for Linux users, 6
installing for Mac users, 5–6
installing for Windows users, 6

INDEX

248 INDEX

Android SDK Manager
described, xv
locating, xv
using, 6–7

Android Virtual Device (AVD), configuring, 11–12
AndroidManifest.xml file

<manifest> declaration, 22
package definition, 22

android:name tag, 23
ANR crashes, tracking down, 102
ant install command, 16
API levels, monitoring, 184
APK file, watching size of, 76
Application class

accessing, 50–51
accessing variables, 51
activities, 49
adding data to, 50
customizing, 48–50
default declaration, 48
getApplication method, 50

applications
minimum SDK value, 242
names, 48–49
preventing debugging, 240
updating, 241

apps, limiting access to, 180–181
ArrayAdapter class, creating and populating, 131–132
AsyncTask class, 106–112

avoiding use of, 112
doInBackground method, 106, 109
keeping track of, 111
onPostExecute method, 106, 111
onPreExecute method, 106, 109
publishProgress method, 110
showing progress, 110
starting within activities, 111
type arguments, 108–109
using, 111–112

audio, playing in services, 201–204
AVD (Android Virtual Device), configuring, 11–12

B
binder service communication, 160–165

binder and AIDL stub, 162–164
creating services, 161–162

bitmaps, fetching and displaying, 100–101
BroadcastReceiver

creating for intents, 41–43
registering, 42–43
self-contained, 44

builds
crash reports, 246
submitting, 246
updating, 246

button bar layout, 87
button_layout.xml file, creating, 172, 174–175
buttons

adding to services, 152
layout XML, 170–171

C
cache folder, creating for images, 115
call state, watching, 205
cd command, 16
classes

Activity, 25–27
imageReceiver, 119–120
Intent, 37
Loader, 121

click events, reacting to, 133
click listeners

adding to buttons, 65
calling for views, 62
registering with views, 63
setting, 65

colon (:), using with services, 161
command line, creating projects from, 16
communication. See also services

binder service, 160–165
intent-based, 150–159

compatibility library, using with fragments, 230–231
content observer, registering, 154

INDEX 249

ContentFragment class, 224–225
ContentObserver, using with services, 158
ContentProvider

cursor for, 159
registering observer with, 154

cursor loader, using for music playback, 199
cursor.close, calling on cursors, 159
cursors

closing for media, 193
moving to media, 192

custom views. See also extended views; views
adding to XML, 70
declaring class for, 65–66
extending, 66, 68–69

D
data, fetching and displaying, 100–101
DDMS (Dalvik Debug Monitor Server), xv

perspective, opening, 17
debugging

layout issues, 179
preventing, 240

dialogs, beware of loading, 110
drawable folders

contents of, 71
referencing, 76
using, 76

E
Eclipse IDE, xiv

adding Android plug-in to, 8–9
backing up keystore file, 244–246
creating activities in, 25–27
creating emulator, 10–13
creating views, 55
declaring services, 114
downloading, 4
exporting signed build, 243–244
IMusicService.java file, 161
installing, 5

locating Android SDK, 9–10
Zipalign tool, 245

emulator
creating, 10–13
troubleshooting, 18–19

exceptions, handling, 137
exporting release build

release build, 243
signed build, 243–244

extended views. See also custom views; views
changing colors, 67
creating instances, 68
customizing, 66–68
ForegroundColorSpan, 66–67
using, 68–70

F
file system cache, relying on, 116
files, 22

directory, 23
locating, 23
saving to SD cards, 116

folders, 22
ForegroundColorSpan, using with extended views, 66–67
FragmentActivity class, 226
FragmentManager, 229–230
fragments

backward compatibility, 230–231
compatibility library, 230–231
content view for FragmentActivity, 226
ContentFragment class, 224–225
creating, 224–225
declaring in XML layout, 225–226
DemoListFragment, 228–229
features of, 222
layouts, 224–225
lifecycle, 222–223
onAttach method, 222
onCreate method, 222
onCreateView method, 222
onDestroy method, 223

250 INDEX

onDestroyView method, 223
onDetach method, 223
onPause method, 223
onResume method, 222
onStart method, 222
onStop method, 223
placing onscreen, 228–230
showing, 225–230
text view, 225, 227

G
GeoPoints, using with maps, 219
getApplication method, 50
Google Maps library, 214, 216
gray background, adding to RelativeLayout, 95–96

H
hierarchy viewer, locating, xv
Honeycomb

action bar, 232
action views, 236
FragmentActivity class, 226
FragmentManager, 229
Navigation, 232
SetShowAsAction, 234

I
Ice Cream Sandwich

action bar, 232
FragmentActivity class, 226
Navigation, 232

icon clicks, reacting to, 234–235
icons, adding to action bar, 233–234
image fetcher

handleIntent method, 116–117
implementing, 116–117

image uploading, automatic, 150–151
ImageIntentService, 114
imageReceiver class, 119–120

images
cache folder, 115
downloading and displaying, 100–101
external storage, 115
fetching, 114–120
listener for result broadcast, 118–119
notifyFinished method, 118
rendering download, 118–120

<include> tag, using for small changes, 172–176
installing

Android SDK for Linux users, 6
Android SDK for Mac users, 5–6
Android SDK for Windows users, 6
Eclipse IDE, 5

Intent class manifest registration, 37–38
intent filters, registering for, 40
intent-based communication, 150–159

auto image uploading, 150–151
declaring services, 151
getting services, 151
going to foreground, 155–157
observing content changes, 158–159
spinning up services, 154–155
starting services, 152–154

intents. See also activities
adding, 38–40
BroadcastReceiver, 41–43
creating, 29–30
features of, 37
getting for activities, 31
listening for, 41–45
listening for information, 43
moving data, 45–47
receivers, 41–43
receiving, 37
registering receivers, 42–43
retrieving and using strings, 46–47
reviewing, 47
self-contained BroadcastReceivers, 44
stopping listening, 43
toasts, 42

INDEX 251

IntentService

declaring services, 113–114
fetching images, 114–120

J
Java

views in, 56–58
versus XML layouts, 60

JSONArray object, using with list views, 139–140

K
key, creating, 244–245
keystore file

backing up, 244–245
creating, 244–245

L
layout files, separating from activities, 178
layout folders, 170–176

adding suffixes to, 177
buttons, 170–171
contents of, 71, 75–76
<include> tag, 172–176
MVC (Model-View-Controller), 75
specifying, 172

layout issues, debugging, 179
layout-land folder

creating, 172
defining screens in, 177–178

layouts
AbsoluteLayout, 78–82
button bar, 87
height and width values, 55, 57, 86
LinearLayout, 82–89
nesting, 84
RelativeLayout, 90–96
ViewGroup, 77–78
XML versus Java, 60

LinearLayouts, 82–89, 130
button bar layout, 87
layout of children, 84
nesting layouts, 84
orientation, 86
padding option, 88–89
versus RelativeLayouts, 84, 89
using, 87

list element rows, recycling, 144
List Fragment, 126
list views

building, 141–142
custom layout view, 142–143
fetching data, 138
getting Twitter data, 136–138
getTwitterFeed, 138
getView code, 142
handling exceptions, 137
interaction with Adapter class, 144
JSONArray object, 139–140
JSONObject, 142
ListActivity class, 135–136, 139–140
main layout view, 134–135
onCreate method, 135
TextViews, 142–143

ListActivity class, 139–140
creating, 128–130
IDs, 129
XML layout file, 128–129

ListView class
custom adapter, 138–140
described, 126

Loader class
described, 121
using for music playback, 200–201

location service
distanceBetween method, 212
finding supplier, 211
getBestProvider method, 211
getLastKnownLocation, 213
LocationListener interface, 212

252 INDEX

LocationManager object, 212
onLocationChanged method, 212
registering for updates, 211–212
using, 211

locations
adding permission to manifest, 210
getting for devices, 210
<uses-permission> tag, 210

logging, disabling, 244

M
main menu

ArrayAdapter class, 131–132
click events, 133
data, 127
list items, 130–131
ListActivity class, 128–130

main thread. See also thread violations
being on, 102
fetching data, 100–101
getting back on, 104–105
getting off, 103–105
Loader class, 121
recommendations, 102

manifest, 22
map key, getting, 217
MapActivity class

availability of, 214
creating, 215–216

MapControl class, 217–218
maps

manifest additions for, 214–215
using GeoPoints with, 219

MapView class
availability of, 214
creating, 216–217
testing, 217–218
value for apiKey field, 216–217

media
ContentProvider, 190
ContentResolver, 191

Cursor object, 191
loading, 192–193
moving cursor to, 192
onErrorListener, 194
playing, 192–193
playNextVideo, 192
searching SD cards for, 191

media players
cleanup, 204–205
onDestroy method, 204–205

MediaPlayer states
Idle, 195
Initialized, 195
Playing, 195
Prepared, 195

MediaScanner, 191
menu list items, text view file, 130–131
<merge> tag, wrapping views in, 176
 methodNotFoundException, 184
Model-View-Controller (MVC), 75
movie playback

adding VideoView, 188–189
cleanup, 193
closing cursors, 193
onDestroy method, 193
process, 188
setting up for VideoView, 189–190

music playback
audio focus, 205
cleanup, 197, 204–205
closing cursors, 204–205
crashing service, 205
cursor loader, 199
finding recent track, 199–201
headphone controls, 205
icon in notification area, 203
interruptions, 205–206
Loader class, 200–201
missing SD card, 206
onDestroy method, 197, 204
phone calls, 205

INDEX 253

music playback (continued)
playing audio in services, 201–203
setDataSource, 201–202
setForegroundState method, 203
sounds, 196–197
stop method, 204

music service, binding to, 198–199
MusicExampleActivity, 198
MVC (Model-View-Controller), 75

N
New York City, map of, 218
NewActivity class, 39
Next button, creating with RelativeLayout, 93–94
Notification object, creating for services, 156
notification pull-down, creating for services, 157

O
OnClickListener, using with views, 62–65
onCreate method, 24

ListView class, 135
using with views, 63

onDestroy method, using with activities, 34
onErrorListener, using with media, 194
onKeyDown method, using with activities, 28–30, 40
onPause method, using with activities, 34
OnRetainNonConfigurationInstance method, 35
onSaveInstanceState method, 35–36
onStop method, using with activities, 34

P
packages

downloading, 6–7
naming, 240–241

packaging
and signing, 243–245
and versioning, 240–242

padding
LinearLayouts, 88–89
RelativeLayouts, 93

permission, adding to manifest, 210
phone’s call state, watching, 205
photo listening service

registering for media notification, 154
starting, 153
stopping, 153

photos, uploading, 159
playNextVideo, 192
preferences, saving usernames to, 182
projects

creating, 14–16
creating from command line, 16
DDMS perspective, 17
Java package, 15
naming, 15
naming activities, 15
naming applications, 15
running, 17
selecting, 14
selecting version of, 15

public void onResume method, using with activities, 33
public void onStart method, using with activities, 33

R
reflection

accessing SDK methods with, 183–184
benefits of, 184
 methodNotFoundException, 184

RelativeLayouts, 90–96
gray background, 95–96
versus LinearLayouts, 84, 89
Next button, 93–94
padding declaration, 93
<RelativeLayout> declaration, 92
using, 90–96

release build, exporting, 243
res/ folder

contents of, 71
layout folders, 170–177

resources, finding, 59

254 INDEX

R.javafile

code, 72
creation of, 71

S
saving files to SD cards, 116
screen layout, creating for activities, 27–29
screen sizes, handling, 75, 89
screens, defining in layout-land folder, 177–178
SD card, saving files to, 116
SDK (software development kit)

downloading, xiv, 4
installing for Linux users, 6
installing for Mac users, 5–6
installing for Windows users, 6

SDK methods, accessing with reflection, 183–184
SDK value, setting, 242
SDK version number

declaring support for, 181
finding, 184

Service class
described, 148
onBind method, 151

ServiceExampleActivity, 152–153
services. See also communication

binding and communicating with, 164–165
bringing into foreground, 155
colon (:) in process, 161
ContentObserver, 158
Context.stopService, 149
creating, 161–162
creating notifications, 155–156
cursor for ContentProvider, 159
declaring, 113–114, 151
getting, 151
ImageIntentService, 114
IMusicService.Stub class, 164
keeping running, 149
lifecycle, 148
main thread, 149
Notification object, 156

notification pull-down, 157
onBind method, 148
onClickListener, 164
onCreate method, 148
onDestroy method, 149
onStartCommand method, 148
setForegroundState method, 155–156
shutting down, 149
as singletons, 148
Start and Stop buttons, 152
startForeground method, 149
starting, 152–154
stopSelf method, 149

setContentView method, 28, 33, 55
setForegroundState method

music playback, 203
using, 155–156

SharedPreferences, apply method, 182
signed build

exporting, 243–244
keystore file, 244

sound effects, playing, 196–197
Start and Stop buttons, adding to services, 152
StrictMode.enableDefaults, 120

T
tabs, adding to action bars, 235
text view

customizing, 65–66
grabbing instance of, 59–60

TextView class, 142–143
TextView ID, creating for activities, 27
thread violations, spotting, 120. See also main thread
Toast API, 42
troubleshooting emulator, 18–19
Twitter data, creating for list views, 136–138
Twitter feed

displaying, 143
downloading, 143
parsing, 143

TwitterAsyncTask, 136–138

INDEX 255

U
UI (user interface)

AbsoluteLayout, 78–82
altering at runtime, 58–60
changing visibility of views, 61–65
creating views, 54–58
customizing views, 65
drawable folders, 76
finding resources, 59
identifying views, 58–59
layout folders, 74–76
LinearLayout, 82–90
RelativeLayout, 90–96
resource folder, 71–73
values folder, 73–74
View class, 54
ViewGroup, 77–78

USB debugging, enabling, 12
usernames, saving to preferences, 182
<uses> tag, 180
uses-sdkfield, including, 242

V
values folders

arrays, 73
colors, 74
contents of, 71
creating, 74
dimensions, 74
strings, 73
styles, 74

version, selecting for projects, 15
versioning

versionCode field, 241
versionName field, 241

video player, creating, 188–190

VideoView

adding for movies, 188–189
extending OnCompletionListener, 189
implementing onCompletion method, 189
setting up for, 189–190

view clicks, tracking, 62
ViewGroup

dip value, 78
dp value, 78
match_parent value, 78
px value, 78
using with layouts, 77–78
wrap_content value, 78

views. See also custom views; extended views
assigning IDs, 58–59
bringing in from XML files, 176
centering between objects, 95
changing visibility of, 61
click listeners, 62
creating, 54–58
findViewByID, 58–60
GONE visibility setting, 61
identifying, 58–59
INVISIBLE visibility setting, 61
keeping, 60
laying out, 75
LinearLayouts, 130
OnClickListener, 62–65
onCreate method, 63
retrieving, 59–60
setVisibility, 61
VISIBLE visibility setting, 61
wrapping in <merge> tag, 176
in XML, 54–55

views in Java, 56–58
dip value, 57
dp value, 57

256 INDEX

fill_parent value, 57
match_parent value, 57
px value, 57
wrap_content value, 57

W
websites

ActionBar documentation, 236
Android Developers, 4
Eclipse IDE, 4

X
XML (Extensible Markup Language)

setContentView method, 55
views in, 54–55

XML files
bringing in views from, 176
packed binary format, 73
referencing resources in, 73

XML versus Java layouts, 60

Z
Zipalign tool, accessing and using, 245

INDEX 257

	Contents
	Introduction
	Welcome to Android
	CHAPTER 4 ACQUIRING DATA
	The Main Thread
	You There, Fetch Me that Data!
	Watchdogs
	What Not to Do
	When Am I on the Main Thread?

	Getting Off the Main Thread
	Getting Back to Main Land
	There Must Be a Better Way!

	The AsyncTask
	How to Make It Work for You
	A Few Important Caveats

	The IntentService
	Declaring a Service
	Fetching Images
	Checking Your Work

	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

