Publishers of technology books, eBooks, and videos for creative people

Home > Articles > Digital Photography

This chapter is from the book

Analyzing Color Balance

Most of the time, you’ll be able to spot inaccurate color balance visually, simply by looking at your calibrated display. For example, a tungsten-lit scene will look orange when you’re using film stock that is balanced for daylight or a video camera with its white balance set to daylight.

Aside from the obvious color cast, orange light from incandescent fixtures may lend an inadvertently theatrical look because of the viewer’s association with artificial lighting. For example, the image on the left in Figure 4.23 is incorrectly balanced for daylight, and the tungsten lighting lends a warm, orange cast to it. The image on the right is properly white balanced, with whiter highlights and truer colors throughout the scene (note the blue sunlight spill in the foreground).

Figure 4.23

Figure 4.23 On the left, a tungsten-lit scene with incorrect color balance; on the right, the same scene with correct color balance.

Similarly, a daylight scene shot using tungsten-balanced film stock or a video camera with its white balance set to tungsten/indoors will look bluish (Figure 4.24).

Figure 4.24

Figure 4.24 On the left, a daylight-lit scene with incorrect color balance; on the right, the same scene white-balanced correctly.

If the filmmaker was not intending to portray a cold winter day, this is clearly a shot that would benefit from correction. Compare the image on the left in Figure 4.24, which is incorrectly balanced for tungsten, to the properly white-balanced image on the right.

Using the Vectorscope

The vectorscope measures the overall range of hue and saturation within an image. Measurements are relative to a graticule that’s overlaid on the scope, which provides a frame of reference via crosshairs, diagonal I and Q bars, and labeled color targets corresponding to 75 percent saturated primary and secondary hues. Figure 4.25 shows all of these indicators relative to the color wheel that represents the reproducible range of color and saturation.

Figure 4.25

Figure 4.25 An idealized NTSC vectorscope graticule, showing all the crosshairs and targets you might expect to use to measure a displayed graph, superimposed over a color wheel showing their approximate correspondence to hue and saturation. Typically HD vectorscopes don’t have as many reference items.

Figure 4.25 should clearly illustrate that hue is indicated by the location of a graph trace’s angle around the center, and saturation is indicated by a trace’s distance from the center.

In reality, the graticules of most software vectorscopes are considerably simpler. At the least, a vectorscope should have the following graticule elements:

  • Primary and secondary color targets that correspond to the top row of bars on the SMPTE color bars test pattern (Figure 4.26).

    Figure 4.26

    Figure 4.26 Portions of the SMPTE test pattern that correspond to vectorscope graticule elements are called out.

  • Crosshairs that indicate the desaturated center of the vectorscope graph.
  • I and Q diagonal crosshairs (and their –I and –Q counterparts). These stand for In-phase and Quadrature (an amplitude modulated phase 90 degrees relative to In-phase), which correspond to the purple and cyan/blue patches at the bottom of the color bars signal.
  • Tic marks along the I- and Q-bars correspond to the voltage waveform that would be traced by the discrete I and Q components, while tic marks running along the outside border note 10-degree increments.

When it comes to graticules, most vectorscopes have some manner of centered crosshairs at the center, which are critical for providing a reference of neutral black, gray, and white in the signal. The “I-bar” (as I’ve come to call it) is optional, and opinions vary as to whether it truly belongs on an HD scope. I happen to think it’s still a useful reference, as I discuss in Chapter 8.

Different software scopes display different graticule elements and also draw the vectorscope graphs differently. Some software scopes represent the analyzed data as a discrete point of data on the graph, while others emulate the CRT method of drawing traces corresponding to each line of video that connect these points together. These traces aren’t necessarily adding any actual data to the graph, but they make it easier to see the different points, and so they can be easier to read. Figure 4.27 illustrates the differences in three commonly used vectorscopes.

Figure 4.27

Figure 4.27 Three excellent examples of different software vectorscopes compared (left to right): DaVinci Resolve, Autodesk Smoke, and Divergent Media ScopeBox (showing the optional Hue Vectors graticule that I designed).

DaVinci Resolve has a traditional vectorscope, the graph of which emulates a trace-drawn graph, with 75 percent color bar targets and an In-phase reference line. Autodesk Smoke has a unique vectorscope graph option that averages analyzed color as a scatter graph that consists of differently sized dots representing the amount of color at that position, which makes it really easy to read and calls attention to the outer boundary of signal that light traces might not make apparent. Smoke draws both crosshairs and 75 percent targets.

The third vectorscope shown, Divergent Media’s ScopeBox, has a more traditional graticule available, with a trace-drawn graph, but it’s also a forward-looking application that was the first software scope to incorporate the Hue Vector graticule I designed, which presents lines that are aligned with each of the primary and secondary colors to help give colorists reference points for comparison, a center crosshair that’s aligned with the warm/cool axis of naturalistic color temperature for lighting, an In-phase positioned reference line, a user-customizable reference line, and both 75 percent and 100 percent tic marks for color intensity. ScopeBox also has a peak option for the vectorscope, which shows an absolute representation of the outer boundaries of the signal, making it easy to spot signal excursions that can be hard to see with faint traces. In fact, you may notice that the peak outline shape matches the scatter graph of the Smoke vectorscope.

Judging Color Balance Using a Vectorscope

Since the center of the vectorscope graph represents all desaturated, neutral values, it follows that if a graph is uncentered and the image is supposed to have neutral tones in it, a color cast is present.

In Figure 4.28, the vectorscope graph to the left is suspiciously lopsided, leaning heavily toward yellow-green. This may not necessarily be wrong, but it should at least cause you to look at the source image a bit more closely to make sure this makes sense.

Figure 4.28

Figure 4.28 Comparing an off-center graph (left) and an image with a centered graph and image (right).

The vectorscope graph to the right corresponds to a neutral version of the same image. Notice how this graph is much more evenly balanced relative to the center crosshairs of the graticule, with arms stretching more prominently toward several different hues. Again, this is no guarantee that the color balance is correct, but it’s a pretty good indication that you’re in the right ballpark if the image on your broadcast display looks right.

Judging Saturation Using the Vectorscope

Judging the relative amount of saturation of an image is easy, since more saturated values extend farther away from the center of the scope than do less saturated values. In the following low-saturation image, the vectorscope graph is small, hugging the very center of the vectorscope graticule (Figure 4.29).

Figure 4.29

Figure 4.29 A low-saturation image with a correspondingly small vectorscope graph.

Take a close look at the graph. There are in fact excursions (parts of the graph that extend in various directions) that stretch toward the R(ed) and B(lue) targets, but they’re small, indicating that while there is color within the image, there’s not very much.

Most vectorscopes have the option to zoom into the graph, allowing you to see the shape of the graph with more clarity, even if the image is relatively desaturated (Figure 4.30).

Figure 4.30

Figure 4.30 Zooming into the vectorscope graph from Figure 4.29 makes it easier to see more detail in the graph of an image with low saturation.

The high-saturation image in Figure 4.31 yields a much larger vectorscope graph, with arms stretching out toward the various color targets that correspond to each hue.

Figure 4.31

Figure 4.31 A highly saturated image with a correspondingly large vectorscope graph stretching farther out toward the edge of the graticule.

In the more highly saturated image in Figure 4.31, notice how the abundance of red reads as an arm of the graph that extends toward the R(ed) target, while the blues in the man’s clothing appear as another arm of the graph that extends toward the B(lue) target. An abundance of yellow and orange creates a cloud in the vectorscope graph stretching toward the Yl (yellow) target. Finally, two conspicuous gaps in the graph, in the direction of the G(reen) and Mg (magenta) targets, tell us that there’s very little of either of these two hues present in the image.

Using the RGB Parade Scope

The parade scope shows separate waveforms analyzing the strength of the R, G, and B components of the video signal. This is a composite representation, even if the original video is Y’CBCR-encoded. By showing a comparison of the intensity of the red, green, and blue components of the image, the parade scope makes it so you can detect and compare imbalances in the highlights (the top of the graph), shadows (the bottom of the graph), and midtones for the purposes of identifying color casts and performing scene-by-scene correction.

Recall that the whitest highlights and darkest blacks of an image are nearly always desaturated. With that in mind, red, green, and blue waveforms with tops at or near 100 percent/IRE and bottoms at or near 0 percent/IRE should typically align very closely.

In Figure 4.32, we can see that the lighting outside the window is a cool blue, the lighting on the wall behind the woman is fairly neutral, and the shadows are deep and black.

Figure 4.32

Figure 4.32 An evening scene for analysis.

Each feature can be seen within the parade scope, and the relative height of the corresponding graphs indicates the color balance within that zone of image tonality. For example, the blue window can be seen in the elevated spike at the left of the blue waveform (Figure 4.33). The woman’s face corresponds to the elevated spike in the middle of the red waveform. And the neutral wall can be confirmed by the equally level shape of all three color channels at the right of all three waveforms.

Figure 4.33

Figure 4.33 The parade scope analysis for Figure 4.32.

By learning to identify features within the parade scope graphs, you can quickly spot where unwanted color casts appear and get guidance as to where within the image you need to make corrections.

Learning to Read Parade Scope Graphs

The RGB parade scope is essentially a Waveform Monitor that displays separate graphs for the red, green, and blue channels of an image. To understand the parade scope’s analysis, you need to learn how to compare the shape and height of the three Waveform graphs to one another.

Similar to the Waveform Monitor, each of the parade scope’s graphs presents a left-to-right analysis of the tonality in the scene. The difference is that while the Waveform Monitor measures the luma component, each graph in the parade scope represents the individual strengths of the red, green, and blue color channels.

In Figure 4.34, the generally accurate and neutral color balance of the scene is evidenced by the relative equality of the heights of the red, green, and blue channels, especially at the top and bottom of each waveform.

Figure 4.34

Figure 4.34 An image with an RGB parade scope analysis showing evenly balanced highlights and shadows.

Even though the graphs look similar, closer inspection reveals that the peaks and valleys of the parade scope’s three graphs correspond to various features in the picture. While strong highlights, shadows, and desaturated elements often have components of equal height in each graph, saturated subjects will certainly vary.

For example, splitting apart the red, green, and blue channels of the image in Figure 4.35 and superimposing the red, green, and blue parade scope waveforms shows the correspondence between individual features within the image and the strength of each parade scope waveform. Keep in mind that each individual color channel is merely a grayscale image and that the corresponding waveform is simply an amplitude measurement of that channel.

Figure 4.35

Figure 4.35 In this image, the red channel is significantly stronger (elevated) all the way through the graph, while the green channel is the next strongest. This indicates a strong yellow/orange (the secondary combination of red and green) color cast throughout the shadows, midtones, and highlights of the image.

Looking closely at each waveform reveals that, while the highlights corresponding to the pillar and window sill are of equal height, the portion of the red waveform corresponding to the faces is stronger than in the green and blue channels, which we’d expect. There’s also a spike in the red channel that lines up with the brick wall, which we’d also expect.

By identifying a particular feature within the graph, you can check its color balance. Generally speaking, color casts are the result of one or two of the color channels being either too strong or too weak. Whatever the problem, it’s easy to see which color channels are at fault using the parade scope. In Figure 4.36, a bit of detective work might reveal that the white balance setting of the video camera was incorrectly set relative to the lighting of the environment. If you’re dealing with a film image, a film stock may have been used that was inappropriate for the lighting.

Figure 4.36

Figure 4.36 In this image, the red channel is significantly stronger (elevated) all the way through the graph, while the green channel is the next strongest. This indicates a strong yellow/orange (the secondary combination of red and green) color cast throughout the shadows, midtones, and highlights of the image.

Whatever the reason for the color cast, simply knowing that one of the channels is inappropriately strong is a starting point. A closer examination of the parade scope’s graph will also tell you exactly what you can do about it.

In Figure 4.37, the bottom of the blue channel’s graph is significantly lower than those of the red and green, even though the top of the blue channel is higher (providing the strong bluish highlights for this night scene). This is your cue that the deepest shadows (blacks) of the image are imbalanced, which lends an odd, washed-out look to the image.

Figure 4.37

Figure 4.37 A low-light image with a color imbalance in the shadows.

Keep in mind that balancing shadows using the Lift control can be a tricky operation that, if not done precisely, can cause more problems than it solves if you inadvertently add a different color imbalance to the blackest parts of your image.

Most scopes have an option to zoom into the graph so you can get a closer look at how closely the shadows of the parade scope waveforms are aligned, making it a lot easier to do this critical black balancing.

In Figure 4.38, we can clearly see after zooming into the parade scope that the blue channel is weaker in the shadows than the red and green channels.

Figure 4.38

Figure 4.38 Zooming into the bottom of the parade scope makes it easier to align the blacks of the image.

RGB Parade vs. RGB Overlay

An RGB parade scope and an RGB overlay scope both display the same information, but they differ in their presentation. As we’ve seen previously, parade scopes display discrete waveforms of information side by side so that you can see each waveform independently and in its entirety. Overlay scopes, on the other hand, superimpose all three waveforms over one another so that you can see how they align more interactively.

Which is better is completely a matter of preference, but here’s a hint on how to spot where the red, green, and blue waveforms line up, and where they don’t, on an overlay scope: Modern overlay scopes usually have the option of displaying each of the three color-channel waveforms with the color they represent and the three graphs combined additively (Figure 4.39). This means that, where the three waveforms align perfectly, the resulting traces in the graph turn white (since equal red + green + blue = white).

Figure 4.39

Figure 4.39 RGB overlay scopes.

Many software scopes provide the option to turn color on and off, on the premise that the colors can be a distraction in a darkened suite. While parade scopes can still be read with the graph colors turned off, color is essential to being able to make sense of an RGB overlay scope, so make sure it’s turned on.

Where the waveforms don’t line up, the discrete colors of each waveform are more or less clearly visible in the region of image tonality where the incongruity occurs, making offsets more visible.

RGB Histograms

Different applications also present individual histograms for the red, green, and blue channels. Similar to a luma histogram, each color channel histogram shows a statistical analysis of the number of pixels at each level of image tonality. The results are somewhat similar to the RGB parade scope in terms of seeing the comparative strength of each color channel in the highlights, midtones, and shadows of an image.

Unlike the RGB parade scope, there is no way to correlate an individual feature or subject within the frame to the rises or dips on any of the color channel histograms. Large rises indicate a lot of color channel pixels at that range of image tonality, while dips indicate fewer color channel pixels.

Depending on the application, RGB histograms can be either presented in parade mode or overlaid over one another. Sometimes histograms are oriented vertically, as in FilmLight Baselight (Figure 4.40, left), while other applications present them horizontally (Figure 4.40, right).

Figure 4.40

Figure 4.40 Two RGB histogram graphs compared. FilmLight Baselight is on the left; SpeedGrade is on the right.

RGB histograms are very good, however, at allowing you to compare the overall strengths of each color channel within each zone of image tonality.

Peachpit Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Peachpit and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Peachpit products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email ask@peachpit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.peachpit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020